The Invisible Buffet: How Much Are We Feeding the Bacteria in our Drinking Water?

Eric Cowan^a, Emma Goslan^a, Francis Hassard^a, Irene Carra^a*

^aCranfield University

What is AOC? 'Assimilable' organic carbon (AOC) is a term to describe the most easily-consumed bacterial food. Image: the most easily-consumed bacterial food DOC Image: the most easily-consumed bacterial food Image: the most easily-consumed bacterial food

My Project Plan
1. Compare current AOC quantification methods.
Method A vs. Method B vs. Method C
2. Evaluate 'proxy' AOC measurements.
Example Proxy Parameters
UV/Vis absorbance
AOC vs. \longrightarrow Fluorescence
Molecular size and charge

preventing bacterial regrowth in drinking water—a challenge exacerbated by climate change^{1,2}.

TemperatureImage: Constraint of the sector of t

How is AOC Measured?

AOC is too complex to measure directly; instead, we let bacteria consume all AOC then quantify the newly-formed biomass:

1. Culture

Convert AOC to biomass

2. Quantify

Measure final biomass

3. Investigate the formation and removal of AOC.

Prospective Impact

Better Monitoring

Cost-Savings

Informed Decision Making

Time

The Problem...

Measuring AOC is **slow**, **labour-intensive**, and has **no "Gold Standard"** method^{2,3}.

Consequently, **despite a global demand** to monitor bacterial regrowth potential in drinking water...

Regular AOC monitoring remains extremely rare!!!

References

¹van der Kooij, D., Visser, A., & Hijnen, W. A. M. (1982). Determining the concentration of easily assimilable organic carbon in drinking water. Journal (American Water Works Association), 74(10), 540–545.

²Prest, E. I., Hammes, F., van Loosdrecht, M. C. M., & Vrouwenvelder, J. S. (2016). Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Frontiers in Microbiology, 7, 45.

³Pick, F. C., Fish, K. E., Biggs, C. A., Moses, J. P., Moore, G., & Boxall, J. B. (Directors). (2019, December 6). Application of enhanced assimilable organic carbon method across operational drinking water systems (12).

Email: Eric.Cowan@cranfield.ac.uk

Engineering and Physical Sciences Research Council